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* ABSTRACT

The analysis leading to the optimum transfer function for an
active suspension excited by a random guideway input is briefly reviewed
and a design chart is presented. A parameter sensitivity study of the
stability 1s performed and shows excellent system stability. The
wheel-guideway contact problem is considered and a design chart is
developed to check wheel-guideway relative displacement (wheel hop)
for active suspensions. The equations for the rms force required
to prevent wheel hop are derived and a design chart showing the
minimum rms vehicle acceleration which can be obtained while applying
this force is presented. The improved vibration isolation
characteristics of active suspensions using preview control are
investigated for infinite and finite preview distances. It is found
that for a simple model infinite preview can reduce the rms vehicle
acceleration by a factor of 16 and that a preview time of .4-.5 seconds
is sufficient to provide almost the same improvement as infinite preview.
It is concluded that active suspension development for vehicle heave,
roll and pitch control, particularly for use with preview control, is
warranted.
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M Mass of sprung mass

n Constant

P Penalty function

r Mass ratio m/M

s Laplace operator

t Time

T Preview time-
Velocity

%) -Synthesized suspension transfer
function

WP Preview synthesized suspension
transfer function

ww -Synthesized transfer fuﬁction

for minimum rms suspension force

"x,X Roadway elevation; constant

X Roadway elevation at vehicle
y,Y Sprung mass position; constant
y Response of y to a step in x

z,Z _Unspruﬁg mass position

o Clearance factor
2

B _ Dwu

Y wS/wu

v(t) Inverse transform of TI'(s)/A (s)

—iv-

X Roadway elevation at preview sensor



Synthesizing function
z-y
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Damping ratio c/2¢k12Ml
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I. INTRODUCTION

The present report represents an extension of the work
reported in Referencesl&2 The procedure and results of that work are
very briefly reviewed below to provide background and eas& reference
for the current analyses.

It has been found[l,ZTthat the profiiéesbectrum of
representative guidewa}s (runways, highways, etc.) can be convéniently

represented by an equation of the form

2 _AV _ AV -
¢ D ‘_A/Q or ¢ (W) ==, =5 , _ (1)
. w . 8 o
(nomenclature on page iv). ’ . This guiceway inpuc acts on a

vehicle suspension as showp in Figure 1, whcre the excursion oﬁcthc
suspension 1is limi;ed by practical considerations.l Sufficicnté
clearance must be provided‘to allow for:load variations aé-weli as
dynamic excursions of the unsprung mass as shown in Figure 2. S}nce;
we are working with random inputs bottoming of the'éuspension.wiil
occur occasionally (unless prevented by non-linear characteristics near
the excursion limits) bﬁt can be made infrequent by allowing

clearance space needed for dynamic excursions -equal to several times

(by a factor of o) the rms relative dynamic displacement. Thus

h/2 - F/2k = ad - @

Since there are indications that the roadway elevation distribution is
Gaussian, the parémeter o should be about 3 to keep the sprung mass
from bottoming at least 99.97% of the time.

{ ] indicate references at end of report
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The clearance required to provide certain vibration isolation
characteristics or, conversely, the vibration isolation which can
be achieved with a given suspension excursion clearance 1is thus of
prime importance. To optimize the vibration-clearance trade-off,
a penalty or cost function, P, is formed whicﬁ is a linear combination

of the rms acceleration, §rms’ and the clearance space h

P=py  +h=pj _+208 _+F/k ' (3)

The parameters of a given suspension transfer function and
the transfer function for an unknown suspension which will minimize )
this penalty function were then derived using variational calculus
(ala Wiener filter theory).

~ The optimum transfer function which minimizes the penalty
functiom® was found to be

wu2¢2[(B + 1)6% + Co + 1]

w(¢) = (4)

/B % + 2/B Do> + /BE? + 2/B o + 1
where the parameters B, C, D and E are defined in Appendix A.
The expression for the rms acceleration §rms’ non—-dimensionalized

by the roadway roughness A, vehicle speed V, and unsprung mass natural

frequency in Hz, fu’ was then found to be

. joo 1/2
Yrms - 1. W) . W(;Q) . do (5)
7 2mj ¢ -

4’ AVfu3 —joo



or with the help of tabulated algebraic expressions for the

above.integral, the acceleration becomes:

. “ ' /2
Y rms - (B+1)(2/‘EI-/'D)+(C-23-2)2/‘1+2/‘D

4“2/AVfd3 88 (/—DEI - p? ./“I )

(6)

where B, C, D, E, and I are evalneted-in Appendix A.>'Sihilarly,l

the clearance space h = 2a6¥mé-is given by’

_ R o P 12

h /fg__. /—— (B + l)(l + l/rL 21) + [2/“1) - c(1 + 1/r)i 2/"(DE - I)]

ad AV 8(8 DEI -/B” - B’ ). | |
et (7

The nibration—EIearanoe snace.trade;off for the optimum synthesized
s;spension corresponding fo:a givenrmess ratios r, is ohen found as
follows | | f |
| Va) Choose a- value of 8, compute B, C D, E, and I (see Appendix A)
and then find the rms acceleration and the clearance space
fme'tne‘above tworequations;b)Increment B and repeat the whole
nrboedufe:‘iThe points'on‘a nioraﬁion—oiearence plot thus found define
a cnfve:ﬁhich is‘e-lowermboundEfoifne perfonnancexof-susnensions which are
linear, do not use preview information, and apply equal forces to the
unsprung and sorung masses. This optimum trade—off curve is shown for
r = 0.1 in a design chart (Figure 3) along with curves for passive,
fixed confignretion‘systemsﬁ 
| This oesién chsrt-shows the sprung mass.rms acceleration

which can be obtained with a given clearance space using passive
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systems, automatic height control and synthesized active suspensions
without preﬁiew information.

These curves aésume that the Qheei‘is restraiﬁed to
follow the guideway profile (no wheel hop, positive and negative
forces bétwéen guideway and wheel are permissible). The present -
report extends the analysis to include the wheel-guideway contact
problemtand additional design charts are generated to be used in
conjunctioﬁ with Figurg 3 to check‘for wheel hop.

The analysis is also extended to investigate the beneficial
effects of finite and'infinitg‘pteview control in which case the

active susperision can anticipate guideway disturbance inputs.



IT. OPTIMUM SYNTHESIZED SUSPENSION

A. Mechanization of Synthesized Suspension

Wrious control system configurations have transfe;
functions which can be made to match the transfer function of
Equation (4) which has been mathematically synthesized. The procedure
followed here is to consider variables which are easily measured and
filtered to generate a control force command signal (see Figqre 4).
Accelerometers may be used to measure unsprung.and sprung mass
accelerations. Each signal may be filtered by a function of tﬁe form
(Ka + Kv/s) and then summed to form a command signal. Amplifier and
servomechanism dynamics need to be considered in a specific design
study but are neglected in this preliminary treatment. In additionm,
forces proportional to unsprung mass-sprung mass relative displacement
and velocity may be generated either passively by springs and shock
absorbers or activeiy by a variety of transducers, amplifiers, and

actuators. Thus the control force is assumed to be of the form
F = (ecs+k . )(z-y) -K s’y -K sy +K _s’z+K sz (8)
s ¢ 12 y sa y sv y ua uv

where the nomenclature is defined in Figure 4. The transfer function

relating sprung mass acceleration to roadway elevation becomes
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Figure 4, Schematic Diagrém of Active Suspension



rK r K :
w2u¢2[ 2ua ¢2 + ($Q_+ 5 uv)¢ +1]
$6) _ Ym Yomw 7
x(¢) K K : K K
| 7—2(1 + _;a__'__:g_)(plo + [2_?;(1 -YF 1/rl+ gv + 2uv ]¢3
Y Mmu Y mmu
K K B . L
+ PR yne’ + E vy O}
& Ty

\ S
where Yy = kOlM/kIZm; = c/f2 /EIZM .

The block diagram for the general active suspension system described by
Equation (9) is shown in Figure 5.

The active suspension System'can be made optimum’by
equating coefficients of like power of ¢ in the numerators and in the
denominators of Equations (4) and (9). There is some redundancy of
parameters. For example, Kuv can be zero and Y or Ksa chosen
arbitraril&. If y is arbitrary, the sbring stiffness, k,may be made as
large as hardware limitations permit in order to minimize the effects
of externally applied vehicle forces. In order to realize optimum
suspension performance, it is essential thﬁt the actﬁator force depeﬂds
in part on unsprung mass acceleration.

The non-~dimensional equations rélating the
parameters used in the actiQe suspension described by Equétion (9) to the
coefficients of p in the optimum synthesized transfer function are

(for Khv = 0):

1+K /M -lllz
sa
/B—-B(1+1/r)—l

-9-
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22 . v B + 1)/r

T = %’YC . V ‘ (ib) o

st 2
W " 2/8 oy’

Since it is desirable to build as simple a system as possible, one can
choose K__ equal to zero to minimizé the number of fggdback v#r}ables.
The parameters Y, Kua/m, L, and st/Mwu are computed from the above
equations and plotted in Figurg 6.

| In a rather lengthy theoretiéai synthesis study such
as this, one often wonders i1f the results (the design chart, Figure 3, and
optimum parameter chart, Figurg 6) aréAvalid. To confirm the
above results, a parameter search 6btimization was performed. The
rms'accelerationpﬁrms?and relative Qisplacement§6rms,were expréssed
in terms of the system paramefers Ys Kua/m, z, and st/Mw; and
substituted into the expression for the penalty function P [Equation
(3) with F = 0]. P was then minimized for severgl values of the
weighﬁing factor p by a hiil climbing type of digital computer
parameter search program (seé Appendix q). The results
of this independent optimization procedure confirm those found by the

synthesis method.

B. Sensitivity Analysis

"~ In addition to determining the optimum parameter values

-11-
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from Figure 6, it is desirable to examine the roots .of the synthesized
system characteristic equation. The roots indicate system resonant '
frequencies and damping ratios that should be known before any'complete
system design is undertaken. In practice,it is not generally possible‘
to build a system with the precise parameter values specified‘by.an :
initial design study. Consequently, one should be)avare of the
sensitivity of system performance to deoiations in values of parameters
' from the optimum. It is especially important to determine the effects
of parameter variations on stability.

Each of the roots of the characteristic equation for the
optimuo synthesized system depends only on the weighting factor B.
One may therefore plot the poles of the optimum transfer function
(Equation 9) as a function of B. The root locus shown in Figure 7 was
" found ty computing the coefficients_of the synthesized‘system characteristic
equation and extracting the roots with the ald of a digital computer ‘
program. It should be emphasized that this root locus is not the
conventional type where only one gain is varied. Here all gains are
varied according to the above parameter computation scheme. It may be
seen that at very low and very large values of B, corresponding to
high and low acceleration levels, there will be very lightly damped
system poles. These poles might be a problem if they occur at
frequencies near other structural resonant frequencies not accountedvfor .
in our preliminary investigation.. In addition, one might think thet a
small change in perageter values from the optiﬁum,could shift these .
poles into the right-half piane, making the systeobunstable. .

A sensitivity analysis was performed to determine the

-13~
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percentage by which parameters (the mass ratio, r,and those specifigdvby
‘Figure 6) would have to be varied in order to make the system unstable.
First, to find destabiliéing directions, e;ch pérameter was incremented
~ plus and minus 10% while the other parameters were held fixed at their
optimﬁm values. This was done both for large (*106) and small (*1.0)
‘values of B. Once the destabilizing direétions were found by fhié
method the roots of "worst case" combinations were found for‘seberéi
;ercéntage ﬁaraﬁeter variatioﬂs. }fhe results were somewhat surprising
in two fespects. First, the fractional distance a pole shifted towéfd
Ehé riéht half plane is approximately the same at an§ of the three
Léoints in Figure 7 where the roots approach the imaginary_axis..fThus”
there ddéé not seem to be any greater tendency for poles near the
right half plane to become unstable than for poles further from the
iﬁaginary axis. Secondly, it was found that every parameter could be
varied as much as 50% in the deétabilizing direction without
causing'instability. One wbuld, therefore, not expeét severe B
stability problems iﬁ using the obtimum parameters of Figure 6.to
Kmechénize vehicle systems that reasbnaBly fit the model chosen for this

investigation (Figure 4).

-15-



III. WHEEL-GUIDEWAY INTERACTION

The emphasis, so far, has been on active and passiv;
suspension systems which are optimum only with respect to the vibration-
clearance trade-off discussed previously. Whether these optimum systems
represent satisfactory designs depends on other criteria not accounted
for in the original penalty or costfunction. One of the more important
of these is the requirement that wheels maintain nearly continuous
contact with the guideway if they are not constrained to follow the
profile by the guideway, i.e.,conventional wheels. The relationships
between wheel-guideway dynamics and othér dynamic and economic faétors
of interest such as manehverability, traction, and wear are not well
defined. However, it is certain that each of these qualities will
be adversely affected by any appreciable loss of wheel-ground contact.
By restricting the rms dynamic deflection Gw,rms of the wheels with
respect to the guideway to 1/0!.w of the static deflection Go of the
unsprung mass due to vehicle weight, wheel roadway contact may be
maintained for an acceptable proportion of time. For aw = 3, for example,
wheels should contact the road for 99.9% of_thé time since roadway
elevation probability density functions tend to be gaussian.

In this section two aspects of wheel-roadway contact
will be examined. First, a method and appropriate chart will be
developed for determining the degree to which the wheels of suspension
systems described by the vibration-clearance design chart (Figure 3)
hold the road. Secondly, the minimum rms force required to hold the
wheels of a moving vehicle on the road will be determined. Since this

force is generally applied to the sprung mass (as contrasted to a

-16-



vibration absorber, for example) and since it increases with veloc¢ity,
one will be able to determine upper speed limits of a vehicle for any

given rms sprung mass vibration level.

A. Design Chart Constraint

One may test whether or not optimum suspensions are
satisfactory in regard to unsprung mass excursions relative to the
guideway by first computing the static deflection of the unsprung
mass, 6 , and then the rms dynamic deflections, § for any

o W,rms
particular design. If § 1s greater than § by a factor of three
o . “W,rms
or more, for example, it can be assumed that a wheeled vehicle would
-possess adequate wheel-guideway contact. On the other hand, 1if 50

is not three or more times larger than § ’ thén § should
' W, rms W, TmS

’ ’

either be included in the penalty function and a new optimizZation should
be performed or the optimum syétem should ‘be modified to have good,
though not optimum, vibration, clearance space, and wheel-guideway
characteristics.

The static deflection of the unsprung mass is easily
computéd as the weight of both sprung and unsprung masses divided by the
stiffness kOl' Thus

§ = (n+ Mg , (11)

o k01

where g is the gravitational constant. For a mass ratio m/M of 0.1 the

statig deflection in feet is

2 - ' ,
6, = 9-0/f, 4 (12)

-17-



where fu is the unsprung mass natural frequency in Hz.

The rms dynamic excursion is found from the transfer.
function relating guideway elevation to Gw and the guideway mean square
elevation spectral demsity. The transfer function for Gw, derived

for the general active suspension system (Figure 4), is

2 Ks K K
c ¢° (1 + 22+ 4% 4 pary(1 + 1/1) +—]¢+Y (1 + 1/x)
A = u
x 0 (1+5‘°‘3+-K“—a)"+[2 1+1/ +K$—"+Eﬂ]3
ot R ZY( 2 bl

K, K,
+ [y QL+1/r) +1+ 1¢ + (2t;y+——)¢+Y
u
(13)

From the above and Equation (1) the wheel—guiﬁeway rms dynamic
excursion 1is computed for the optimum systems specified by Figure 3.
The results are shown in Figure 8 as a function of the non-dimensionalized
design clearance.

The shape of the curves in Figure 8 may be explained by
physical reasoning. The suspensions corresponding to the left-hand
side of Figure 8 are designed for small clearance and are consequenﬁly
quite stiff. Thus, as clearance space becomes smaller, the sprung and
unsprung masses become more nearly locked together as one unit atop the
undamped spring represented by kOl' This system approaches a single-
degree-of-freedom lightly damped oscillator which exhibits considerable
relative excursions when excited by a random input. At the right-haﬁd

side of Figure 8, Gw rms again increases with distance from the central
1]

-18-
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minimum. In this case, however, systems are designed for very low
acceleration levels, hence small force transmissibility. As the
suspension forces become lower, the unsprung mass becomes increasingly'
isolated from the sprung mass and behaves like a lightly damped
resonant oscillator.

The proqedure for testing whether any particular optimum
system satisfies the unsprung mass dynamic excursion constraint is now
straightforward. First, the static deflection is computed from
Equation (11). Then the value of GW’rmS/T;7KV'(hence dw,rms)' which
corresponds to the same trade—-off curve and clearance space used in the
optimum suspension design chart, is found from Figure 8. Finally
) is compared with 50 to determine if unspruné mass motion is

w,rms

excessive.

B. Minimum RMS Sprung Mass Force

Oneof‘the fundamental speed limitations to vehicles
using conventional, extremely lightly damped wheels arises from the
time varying force required to maintain nearly continuous wheel-road
contact. If there were no external forces applied to a wheel, modeled
as a single-degree-of-freedom undamped oscillator excited by random roadway
elevations, wheel-roadway excursions would be so large that the wheel would
bounce a great deal. Since the time varying forces that must be applied
to the wheel to keep it on the ground are also applied to the sprung mass
(for suspensions that do not incorporate devices such as vibration
absorbers), it seems appropriate to attempt to find the minimum rms
force, hence rms sprung mass acceleration, required to maintain wheel
road contact.

-20-~



The procedure used here to find the lowest valuevof,rms
force needed to provide adequate wheel-guideway contact cohsistsﬁmainly
of synthesizing the transfer function relating guideway elevation to
suspension force which minimizes the weighted sum of the rms suspension
force applied to the wheel plus the rms wheel-guideway dynamic excursion.

Afhﬁs,there is a trade-off between suspension force and wheel-guidéway
excursion in much the same way as there is a trade-off between sprung
mass acceleration and sprung mass-unsprung mass relative excursion aé
discussed previously. By létting the rms excursio# for this oﬁtiﬁuﬁ |
wheel-guideway systém be as large as is compatible wifh road holding
requirements (1/aw of the static displacement) the force is minimal.
We will, therefore, find the characteristics of the lihear‘system
that can hold the wheels of a vehicle on the road with minimum sprung
mass vibration without regard to Sprung mass-unsprung mass clearance
sﬁ#ce. | | | |

The equation of motion for an'un#prung mass, m, excited

by guideway elevation variations x and a suspension force Fs is '
F_+ kOl(x - 2) = mz (14)

where k01 is the wheel stiffness and z is the wheel displacement.
Noting that the wheel-guideway relative excursion Gw is defined by

Gw = x - z the solution for Gw in terms of FS and wheel parameters is

2 Fs/k .
Gw = g x - > 01 as)
62 + 1 o + 1

By analogy to the block diagram, Figure 5 in Reference 3 with Fs/kOI’
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: Gw and the synthesized wheel-roadway transfer function ww(s) replacing

y, 6, and W(s), respectively, we find that

H (9) = =
¢ +1
(16)
2
o +1
From Equations (1), (16) and (11) and (12) in Reference 3, the
expressions for T(¢) and A(¢) are
2ﬂAV/wu2
T = - ——i
(¢~ + 1)
2| ¢* + 262 +1 + 1/p
A(P) = - 21TAV/wu ) 5 (17)
¢" (" + 1)
The numerator of the bracketed term of the above equation may be
faétored in two stages. First
4 2 2 2
¢ +20° +1+1/p=(¢"+1+ 3/ +1-3//p) (18)

Then the roots of each of the above bracket terms are found so that A(¢)

is given by

2 (¢+b+ej) (¢tb-c}) (d=btei) (¢-b-cj) (19)
$%6% + 1?

A(p) = —21rpAV/wu

where

1/4

b = (1'+ 1/p) sin [% t:an-1 (1/vp)1]
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1/4

c=(1+1/p)""" cos [% tan-l (1//0)1 - .(20)

Upon factoring A(¢) into terms, each of which contains roots on

opposite sides of the imaginary axis, we have

A+(¢) = (¢+b+cj)(¢+b‘c;])
¢(¢ + 1)

ZWAV/w (¢ -b+ci)$-Db - cj)

Af(¢) = -
$(6” + 1) | N ¢3))

Consequently, the expression for T'(¢)/A (¢) is

L(9) 9 |
A7) 667+ DO - b+ e - b - ef)

If we find that part qf the partial fraction expansion of P(¢)/A_(¢),
which has only poles in the left-half plane,and divide by A + (¢), the

optimum synthesized'transfer function is given. by

| Ijﬂl + IZQ,- 1)¢ + 2b]
6% + 2b6 + /T F1/p

There are now essentially three steps to find the minimum rms force,

_Fs rms3 required to hold the wheels of a moving vehicle on the ground:

a) . The rms wheel-roadway dynamic excursion Gw rms,is'found; b)
’ )

‘;—by_equating,Gw;ims to-l/aﬁ of the stgtic wheelAdeflection 60, an

expression containing the weighting factor p and various system-
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pafameters is derived. The value of p that satisfies this equation

corresponds to the minimum rms suspension force; c) the

last step is to find the rms force in terms of p and solve for Fs,rms'
From Equations (1), (15), and (23) and noting that

Fs/k01 = Ww(s)X(s), the expression for Gw,rms is
P 1/2
Vs rms £4b I+ 1/p
By equating o, times the above equation to the expression for the
static wheel deflection [Equation (11)], one obtains
3 2., .4 2
AVE o, (2m) (VT +1/p + 4b7)
: = 1 (25)
1+ 1/r)2g2 4b /T + 17p

In a manner completely similar to the derivation of Equation (24), the

expression for Fs rms divided by the sprung plus unsprung mass weight
14

(m + M)g is found to be .

AVfu3 M GTF IS - DA T I + 4wl /2

s, rms - (26)
(m + Mg 1+ 1/r)2g2 4by1 + 1/p

We can compute and plot Fs rms/(m + M)g as a function of the parameter
»
AVfu3/g2 for several values of r by using an iterative technique to

solve Equation (25) for p and then by solving Equation (26) for Fs rms/
H

(m + M)g. The results of this analysis for o, = 3, illustrated in

Figure 9, show how FS rms/(m 4+ M)g, hence the minimum sprung mass vibration,

increases with roadway roughness, vehicle speed, and unsprung mass natural
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frequency. The benefits of light-weight unsprung masses are also
apparent. |

The curves in Figure 9 represent ultimate speed
limitations because of sprung mass vibration only for an unsprung mass
modeled as a linear single-degree-of-freedom undamped system and for a
linear suspension which applies equal forces to both unsprung and sprung
masses. Damping, present in all real wheels,.tends to make the results
illustrated in Figure 9 conservative. Nevertheless, several steps may
be taken to reduce the suspension force required to maintain adequate
wheel-road contact if vehicle acceleration 1is excessive. First, since
the rms suspension force is approximately proportional to the cube of the
unsprung mass natural frequency, fu’ a considerable sprung mass
vibration reduction may be brought about by a moderate decrease in fu'
gecondly, a vibration'absorber may be used to reduce the forces applied
to the sprung mass. Finally, for vehicies in a tunnel, an overhead
suspension system, which might reduce vehicle vibration, could also be
used to preload the main suspension thereby permitting large wheel-road

excursion (hence small rms force) without loss of wheel-road contact.

~26-



IV. .OPTIMUM LINEAR PREVIEW CONTROL °

The accuracy with which a_drivef can keep his vehicle at
the center of.a lane for a given speéd Qgpends, among other. things, on
his visibi;iﬁy éf the roadway‘ahead of Fhe.car.' éer;ainly a measure
of tracking e%ror (i.e., dgyiation of the §ehicle from‘;he cente; of
the lane) would decrease monotonicaily‘with increasing visibility
but would reach a finite‘value even fér.infiniﬁe visibility. Thus, .
although infq;maﬁion regarding thg.roadway path ahead.qf é_vehiclg
is significan; in controlliﬁg an aﬁtomobile, for long digtancesvsuch
data apparently ﬁrovide diminishing rgturns as thg preview distance
increases. ‘

jThere is a sfrqng similgrity between the function of a
human opgraﬁor té steer a thicle_along a winding road and the function
of'a suspensién‘to gﬁide a y;hicle éver the vertical‘part of a roadway
profiie. ;n ;his section, some of the funda@ental limitations gnd
trade—offs pé;taininé to vehicle suspensionthha;‘are qapable of
utilizing data on the foadway profile ahead of a vehicle are
investigated. Firsf, a vehicle model (different from that used
previously) apd pptimum synthesized suspension that does not use
.previéﬁ cont?ol gill be eﬁgablished. In_order\to find4ult;mate
performance capaﬁili;ies, the optimpm system t;ansfgr_funétion and
correspoﬁding agcgierations and relative.displacements will be fouqd
for‘; system tﬁatvhas'infipite roadway preview._’Fin;te preview
suspensién systems will bé studied,to determine how vibratipn and
clearance space improvements depend.on preview distance. Finally,

mechanization of preview suspension systems will be considered.
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The vehicle model used for this study is a single—dégree—
of-freedom rigid maés connected to the roadway by massless suspension
elements. Unfortunately, the mathematics in this section are sufficiently
lengthy to justify a preliminary study of only the simplest of systems.
The model 1is, however, brecadly representative of the fundamental suspension
problem of guiding a vehicle over a road with a minimum of vibration
and clearance space. Schematically, Figure 10 shows both the
vehicle-suspension-guideway configuration and the block diagram relating
roadway elevation to vehicle acceleration and tq vehicle—rsadway
clearance space. Thg roadway elevation at the preview sensor, Xo»
is viewed as the input to the synthesized suspension,wp(s). The
vehicle acceleration ¥ is integrated twice to give displacement
y which is subtracted from the roadway elevation X, under the vehicle
to give vehicle-roadway relative excursion ép. The roadway elevation
under a moving vehicle X, is the same as that at the sensor position
but delayed by a time T equal to the distance L of the‘sensor in

front of the vehicle divided by the vehicle velocity V.

A. Zero Preview

The transfer function and vibration clearance trade-off
curve for the case of zero preview (L = 0) are useful bases against
which to compare similar results for finite and infinite preview
suspensions. The expressions for the synthesizing functions I'(s) and
A(s) are derived by noting from Figure 12 [Reference 1] and Figure 10b

that Hl(s) = 1/s2 and Hz(s) = 1.
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Thus

I'(s) = —2—“2‘—" ’ (27)
S
5954 +>l)
A(s) = 2TAV e (28)

]
A(s) may be factored into parts each of which contains only poles

and zeroes in the right and left half planes as follows:

e = B s L L as et - a - @
s VZ V2 :

o) =5 s v s it ts v - (30)
s V2 V2

When T'(s)/A (s) is expanded in a sequence of partial fractions, the
term with poles in the left half plane is 1/s. Consequently,
[T'(s)/A—(s)]+ = 1/s and, from Equations (24a) [Ref. 1] and (30),

the synthesized suspension transfer function Wp(s) is

2
W (s),_ o = —E , (31)
p L=0 01/25 + ‘,,2_—01/4S +1
The rms vehicle acceleration y and relative excursion § are
rms p,rms
found from Equations (1) and (31), Figure 10, and the tables
corresponding to Equation (15) [Ref. 3]. Thus
§2 p3/4
;rrl;sxv - _[12;: (32)
L=0
) .
§"p,rms - 3v2 (33)
2TAV 1/4 4
P L=0

only

The weighting constant p may be eliminated from Equations (32) and (33)
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to gilve the equation expressing the optimum zero preview vibration-

clearance trade-off

. 5 3
Yms | Jrms _3/3 (34)
V2TAV |V2TAV L=0 8

B. Infinite Preview

No system is likely to need-or would be capable of
utilizing;bfofile information én the roadway very far (efgﬁ, a ope-hour
fravel time) in advancé of the vehicle. Howevér, the transfer function
and trade—-off curve for an ihfinite'preview system are much easier to
compute tﬁan those for a-finite preview suspénsion and, in addition to
giving ultimate performance limitations, present some interesting
results not obtainable from finite preview considerations. Therefore,
we may solve the Wiener-Hopf integral equation without regard to
physical realizability restrictions (i.e., allow infinite preview).

The Wiener-Hopf equation may be given by (8).

00

I'(t) = Wp(t)A('r'— t)dt R "(35)

<00

Multiplying each side of Equation (35) by e-ST~ahd integrating over T -

gives
J T'(t)e %4t = J e_STdTJ wp(t)A(T - t)dt
or



o] [e o] [e o]
J T'(t)e 54t Wp(t)e_StdtJA(T ~ e S(T Tty

(37)

Thus

[(s) = wp(s)A(s) ‘ (38)

From Equations (11), (12) [Ref. 3], and (38), the expression for the

optimum suspension transfer function for infinite preview Wp(s)L - o I8
Hl(—s)Hz(s)
wp(S)L=oo = Hy (s)H (=) + o (39)

The very remarkable feature of Equation (39) is that wp(s)L=oo is’
independent of the input. Consequently, one might suspect that a
finite preview suspension system with characteristics similar to
Equation (39) is likely to perform very well even for input signals
with quite different statistics from those for which the system was
synthesized. Before discussing finite preview control, let us find
the vibration-clearance trade—-off corresponding to Equation (39).
Since Equation (39) was derived by relaxing physical

realizability constraints, Hl(s) = 1/s2 and HZ(S) = 1, thus

2
W (s), = ——— (40)
P Lo ps4 + 1

By noting that Y(s) = Wp(s) X(s) the expression for the rms value

L=oo
of ¥y is found from Equations (1), (15) [Ref. 3], and (40) as
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w2 3/4 - . joo

Y rms® ' 1 J mz' S B
2TAV 213 4, 2
L=w joo (Y +1)
1/4

where Yy = p s
Equation (4;)_may be evaluated from Appendix B for x = 0 and

n = 2. Thus

(42)

Similarly,the rms relative excursion §
. p,rms

found from Equations (1),

(40) and § () = (1 -~wp(s)/s2)x(s) is

2 l-v jm‘
s 6
2TAVp L;w —joo W +1)

'Equation (43) may also be evaluated from.Appendix:B for xt? 0

and n = 6 as

2 . , . . : '
§ p,rms _ 32 : ’ A (44)
Y 16 . _ :
2TAVpH

L=

When p is eliminated from Equations (42) and (44), the vibration-
clearance trade-off is described by

3 .

a B

.};rms' Gprms" '
: = 23 . (45)

L=co

=
N
o]

V2mAV | V2TAV

Consequently, from the above and from Equation (34) the relation

between vibration and clearance for infinite preview as compared with
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zero preview for a roadway spectrum proportional to 1/“2 is

83 )
rms_ p,rms’L=c 1 (46)
3 16

rms p,rms’L=0

(¥

(¥

Thus, infinite preview provides a remarkable improvement ovef zZero
preview suspensions. WNow that the po;ential of preview suspensions has
been demonstrated, let us consider how suspension system improvement
depends on the distance,L ahead of the vehicle that the roadway is

sensed.

C. Finite Preview

The method for synthesizing the optimum suspension
transfer function for the case when a vehicle can sense the preceding
roadway for a finite distance is similar to the steps taken for the
zero preview situation. However, the delay shown in Figure 10b requires
us to use a more rigorous and lengthy treatment. Until now we have
merely divided double poles on the imaginary axis evenly intd A (s)
and A+(s) when factoring A(s). Here, however, it is necessary to first
shift any poles on the imaginary axis into the left or right half

plane by very small amounts, €, and €, and then find limiting

1 2
function values as > and €, approach zero. Thus
. AV
Qt(s) (s + e,)(-s + ¢.) (47)
1 17
' 1
H,(s) = — (48)
.(s + 82)
Hy(s) = e " (49)
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From the above and Equations (11) and (12)[Refr 3] the synthesizing

functions P(s) and A(s) are -

' : o —gT! )
res) = —2A%e (50)
(~s + 62)’(5 + ei)(—s + El)
| 2mav(ps® - 2€,08” +pe,* + 1) ‘
AGs) = (51)

(s ¥ eé)z(s *e) (s +’52)2K4é'¥ &)

For very small 52 the four roots of the numerator of Equation (51) lie
well off the imaginary axis. For pohﬁenience_then, let us
approximate this numerator by 2'n'AV(ps4 + 1). Thus, Equation (51)

factors as follows:

vt - a + piet4s - ta - n1
- - V2 vZ
A (s) = - 5 :
(-s + 52) (-s + el)
(52)
s+ a e et ts+Ea- o
PO 7 AL o
A (s) = >
: (st g) (s H el) .o - (53)
Dividing Equation (50): by Equation (52) gives.
() _ e ST
N (s + el -2 @+ D1t - 2 -
. V2 . V2
(54)

The inverse Fourier transform of I'(s)/A (s) is a time

function y(t) which generally has non-zero values for plus and minus t.
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The function [I‘(s)/A—(s)]+ is the Fourier transform of y(t) for t > O.
Thus far it has been possible to find [l"(s)/A—(s)]+ by expressing
I'(s)/A™(s) in a partial fraction expansion and retaining only terms
with poles in the left half plane. Since I'(s)/A (s) in Equation (54)
is a transcendental function, [F(s)/A_(s)]+ is evaluated first by
finding y(t) and then by taking the Laplace transform of Y(t) which i1s

identical in form to the Fourier transform of v(t) for t > 0. Thus

joo :
R RGP
3] A (s)
...JOO
From Equations (54) and (55)
o - 1 Jjoo es(t:—T) (56)
) s et s - L e et/ - L a - 9
J V2 : V2

Equation (56) is evaluated in two parts (see Figure lla).
First, for a path of integration around the left half plane,
corresponding to (t-T) > 0, y(t) is equal to the residue at s = —€.
Secondly, for (t-T) < 0, y(t) is equal to minus the sum of the residues

at poles (a) and (b) for a contour taken clockwise around the right

. half plane. The residue at -g£., is

1
e—sl(t—T)
Res(-€,) = (57)
1 01/28 2 + /3 p1/4 e 4+ 1
1 1
Taking the limit as € »+ 0 gives
y() =1 For (t-T) > O (58)
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By evaluating the residues of the poles at (a) &nd (b), Y(t) for

(t -~ T) < 0 becomes (see Figure lOb)

e(t-T)/T 1

y(t) = [cos (Eizﬁ - sin (551)] For (t-T) > 0  (59)

where T = V2 01/4.

The function [I'(s)/A-(s)]+ may now be evaluated by taking the Laplace

transform of Y(t) as follows:

00

Moo J y(t)e Stat (60)
Ay

From Equations (59) and (60) we have

T ©
‘zéil— = J e(t—T)thos(E%I) - sin(E:I)]e—Stdt +| e Star (61)
M)y K
T

When the above integration is carried out and [I‘(s)/A_(s)]+ is
divided by A+(s) (Equation (53)), the expression for the synthesized
finite preview suspension transfer function Wp(s) is

L=L
o

s%(a 0% - /§A2p1/4s + 1)

W (s), . = — (62)
P L—Lo ps4 +1
where Al = e—T/T(cos T/t + sin T/1)
A2 = e—T/T(cos T/T)
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The rms acceleration and clearance may be -found from

Equation (62), and the relations indicated by Figure 10. Thus" -

o 1/4
2ot et - FAzw + VI
T 2mAV 23
L=L ! joo (w + 1)
1/4
2 PT/p
(a0 +4/ZA2¢» +e 7 )
1 dv (63)

When the numerator of the intégrand in Eqﬁation (63) is reduced,

there will be some terms of the form

1/4

PPe —YT/p™: /(w +1)2

By replacing { with -y and approbriately'adjusting integration

limits, Equation (63) becomes

L
)
o /4 /6 5 :
1 6 _ 2AlelPT/p + 2A 1p + 2/2h,e WI/pT 3 |2
213 w* + »?
(64)
When Equation (64) 1is evaluated (see Appendix B), ye
have
l’T(A +aalr/r+oa ey (65)
)
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In an entirely similar manner, the expression for the relative excursion

1s found as

2

6 .
P, 2 2
(Z“AVSSJ_M - I—'l; (3 + 3a,” - 4A12T/T + 6A22) "~ (66)

L=L
o]

The trade-off curves between rms acceleration and
clearance space (hp = zadp,rms) are plotted in Figure 12 for several
values of preview time (in seconds) along with curves for zero and
infinite preview [Equations (34) and (45)].

The relationship between the benefits that may be
brought about by preview control and preview time are not apparent
from Figure 12. Consequently, let us pick a design point on the zero
preview line (h/20/2TAV = 0.4, irms//fﬁxv = 10.0) and determine how
§rms may be reduced for coﬁstant h and AV, how h may be reduced for
constant yrms and AV, and how AV may be increased for constant yrms
and h. The results shown in Figure 13 indicate that substantial
reductions in vibrations and clearance space may be brought about by
using preview control. For a given vibration and clearance space a

vehicle using preview control may travel up to four times faster or over

a road four times rougher (as measured by A) than one without preview.

D. Step Response

A great deal of insight into the nature of preview
suspensions may be gained from the step response (y/x) plbts of these
systems. First, because of the analogy between the integral square and

mean square of response variables subjected respectively to step inputs
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and random inﬁuts of the form AV/s2 (see Appendix C)
a qualitative comparison may be made among systems which operate with
various preview times. Furthermore, step response plots facllitate a
physical interpretatioﬁkof the capabilities of preview systems whiéh
function with less acceleration and less relative excursion than :
optimum nop-preview éuspensions. Finally, step response plots pro;ide
hints4for Fhe development.of systems which might be easily mechanizgd
and which perform nearly as well as optimum synthesized preview |
suspensioné.

Thé_responée of vehicle poSitipn y to a step in rda@yay
elevation x_ 1s found from the definition of the inverse Fourier»f‘
transform -and the tré@ifer function Wp(s)»IEduation'(§2)]'by noting

that Y/X =1Wp(s)/s2.~ Thus

1 e5tas . (67)

joo A p1/432 -‘/f'Azpllas + e-fsT
o= s | »
e-+0

e (st Oes* + 1)

When the iptegration in the above equation is carried out, the step

responsevys(t) is found ﬁs

_ t-T

' 1 1"£ T - t -T
=241 =T 0 _ T
Y&y =5 +5 -7 [1-e cos (

)]

- & _
- %-e &) [cos (& - T) + 2 sin (t/t)cos(T/T)] (68)

Equation (68) is plotted in Figure 14 for several values of preview
time T from the point of view of an observer at the vehicle. Thus,

preview time is the distance from t/T = O to the beginning of the
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response. The non-dimensionalizing parameter T = Jf.pl/4 may be :
thought of as a scaling. factor. For example, when acceleration is to
be small, p, hence T, is large. Consequently, the step responses are
more gradual than they would be if more importance were given to-
relative excursion.

Figure 14 shows how preview control. improves both .
acceleration and relative excursion. Acceleration is proportional
to the curvature (second derivative) of the plots in Figure 14 and
relative excursion 1s proportional to the difference between the step
and a response curve. The rms criterion weighs variables more heavily
for.large values than for small. Consequently, the zero preview step
response shows  that a large initial relative displacement and curvature
will contribute to considerable rms excursion and acceleration. As
longer preview time is used, response curves become more gradual and
reéult in smaller relative displacement as the vehicle body responds

to a step in roadway elevation before. actually reaching it.

E. Mechanization of Preview Control

Mechén;zgtiqn of ;he,transfeg function for the optimum
preview suspension [Equation (62)] is not at all straightforward.
Since some of the_pplgs‘of Equat;on_(62) lie in the right half plane,
the system response first diverges then converges as illustratedA
by the infinite preview step response in Figure 14. Consequently, the
approach taken here is to examine the_;tep responses in Figure 14 and
devise systems with similar responses.

The equation for infinite previe&A[Equation (40)],15
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identical in form to that for an infinite beam on an elastic foundation [9].
(The static deflection equation for a beam on an elastic foundation

may be derived by minimizing the weighted sum of the integral of

curvature squared plus deflection squared which is analagous to

minimizing the weighted sum of rms acceleration plus relative excursion.)
Consequently, one suspects that the steady state behavior of a very long
train such as that proposed by Edwards [10] might approach‘that of an
optimum preview system. However, this 1s a very restricted case.

Let us determine the capabilities of the general, but
elementary,model of the preview suspension system illustrated
schematically in Figure 15. The vehicle, idealized as a rigid mass, 1is
supported above the roadway by a suspension of StiffneSS)kv. The
springmks,represents a simple preview controller in which a force
applied to the vehicle is proportional to the difference between the
vehicle position, y, and elevation, Xg» of the roadway in front of the
véhicle. Damping 1s proportional to vehicle velocity as shown by a
damper attached to an inertial reference. In practice this form of
damping could be approximéted by generating a suséension force
proportional to the integral of the output of a yehicle-mounted
accelerometer.

The position transfer function Y/X for the system shown
in Figure 15 is

k +k e_ST

= () = 25— (69)
s Ms™ + cs + kv + ks

Equation (69), rewritten in terms of nondimensional variables is
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n ;
L (o) =2t sl (70)
s ¢ + 250 + 1

where mnz = (kv + ks)/M, g = c/2\/(kv + kSSM, ¢ = s/u)n and "a'" which
is a measure of distribution of stiffness between kv and ks is
ks/(kv + ks)' From Equations (47) (with € = 0) and (70), the

expression for the rms vehicle acceleration is

w2 3 joo éw_T
Y rms ,fill J —Q?I; - 2a + 2a% + a(l - a)e nAJAd¢
AV 6%+ 200 + D@7 - 200 + D)
o ~¢uw T
w3n J 3 —¢2a(1 - a)e
piYry dé (71)
2n] (62 + 26 + 1) (62 - 226 + 1)

_jw

Equation (71) may be simplified by replacing ¢ with -¢ in the'secpnd

integral and appropriately adjusting limits of integration to give

¥ W = ., . ¢w, T
ms _ _n ¢"[-1+2a(l ~a)(l ~e )
2TAV 273 J—jw 62 + 200 + 1) (02 - 206 + 1)

d¢ - (72)

When the above integral is evaluated (see Appendix D),

the expression for rms acceleration is

y w -tw T
E;i%g BIZEB' 1+2a(l -a)[-1+e n (cos V{ - CZ wnT
-—Lt _sin - C2 wnT)] (73)

v’l—l;z
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! ' . - The root mean square of the relative displacement of the

vehicle with respect to the roadway is given.by

5.(8) = X, () - ¥(s) )

Thus, since Xv(s) = Xs(s)le"-ST

5 ' ' | wﬁﬁ.
_2.(5) - (¢ + 2;¢ + a)e, - a ’ (75)

¢ + 26 + 1

From Equations (47) and (75), the expression for 6p rms is given by .

\ 8 p,rms_“n
- 2TAV
- ‘ Jo . s ¢uw T ow T b T -

1 I QLfZLa-ZC )¢ ~2adp e +4a;¢g n +2a2(1-e D) a6
Joo (¢+el)(¢ +2C¢+1)(-¢+el)(¢ ~27¢+1)

(76)

When the above integral-is evaluated (see Appendix D), the

expression for § becomes
p,rms

2TAV 4t 1 - ?(a - ?E ) - 2a°(4z° - 1) + 2a[l - é

. -tw T .
+ 4;2(1 + a)le n cos/{ - ;2 wnT + 2ar [-1

—cmnT

 +Za+a) - 3a] sin A - r? wT - 2at , 2
~ ) - 1 - . mn ,
3 | | (77
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The values of parameters:a, [, ‘and mn!which optimize the
trade-off between vibration and clearance space,are found by minimizing
| P= p§rms + Gp,rms' ‘The ttade-?ff curves resulting from a digital computer
parameter search (see Appendix.A) are illustrated in
Figure 15. These curves overlap the optimum synthesized trade-off
curves shown in Figure 12 except near the infinite preview line. 1In
this region the curves bend away from those corresponding to the
synthesized suspension and terminate. At these end points a = 1.0
indicating that the spring beneéth the vehicle has zero stiffness.
Consequently, the step response, from the point of view of an observer
on the vehicle, is that of a simple spring-mass-damper system but
advanced by a time T. The only way a smaller value of clearance may
be obtained for this model is by having a relatively flexible preview
controller spring (small‘ks) and a stiff suspension spring (large kv).

This combination results in a system which allows small clearance space
only at the expense of very high acceleration levels. The dotted
curve for T = 0.5 seconds, shown in Figure 15, indicates this

aspect quantitatively. it is difficult to imagine a situation in
which such a system would be desirable since better performance may ge
achieved with shorter preview times.

The presence of.the discontinuity in trade-off curves is
illustrated by a contour plot (Figure 16) of P as a function of "a" and
wn for g = 0.7, and T = 0.5. The minimum at a = 1.0 corresponds to the
lower solid curve in Figure 15 whereas the minimum at a = .15 represents
the higher dotted line. The large value for the natural frequency mn

at the latter minimum explains the large acceleration levels found for

the upper portion of the T = 0.5 seconds trade-off curve.
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V. NUMERICAL EXAMPLE

The preceding sections have presénted rather generai ' a
discussions of the optimization of the random vibration characteristics
of vehicle suspensions. In order to illustrate the use of some of the
suspension design charts (Figures 3, 8, and 9), a numerical example will
be considered. First, a preliminary design of a conventional spring-
shock absorber suspension will be carried out with the aid of Figure 3
for a high speed ground vehicle. Performance benefits that might be
brought about by using automatic height control or synthesized
suspensions will be examined. Figure 8 will be used to determine
whether the suspensions thus far considered possess adequate road holding
- qualities. From Figure 9 we will establish a fundamental limitation to
the primary design chart (Figure 3). Finally, the frequency responses, -
powervspectral densities, and time responses to random roadway inputs

will be found for several possible preliminary designs.

A. Use of Design Charts

The problem posed is to do a preliminary design study of a
suspension system for a vehicle traveling 200 mph over a medium quality
highway, A = 2 x 10“5 ft. First, in order to establish a design
vibration level, let us compute>the rms acceleration of an automotive
type of vehicle going 70 mph over the same highway. For g = 0.5,

r = 0.1, fu = 10 Hz, and £, =/~EI;76Z /27 = 1.5 Hz the automobile sprung

*
mass vibration is about 5.5_ft/sec2.

.*—._.___ ) %
Passengers would not feel this vibration level because seats filter
much of the acceleration.
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Let us suppose‘}for the high speed vehicle that r ?:Oﬂl,

~‘fu = 10 Hz, o 1s equal to 3 to insure that bottoming occurs very.
infrequently and that loading variations are equal to 75% of the
weight of the sprung mass. From these data, the nondimensional

loading variations are

e 2. 3 . !
Y me/ 4™ Y AVE 7 = 0.056

= F/812aM /AV£u3 =0.05

Thus, in Figure 3 Equation (78) is satisfied at point "a'" on the

= 0.05 line and
(h/2a)/fu7AV = 9,0
Therefore, the design clearance 1is

h =1.31 ft. -

The design chart also shows that, at the désign point "a", the

optimum parameter values are

z = 0.2

f =1.0 Hz
s

(78)

- (80)

(81)

(82)

A 1.31 ft. suspension clearance seems rather large. If a low

frequency automatic height control system were used to compensate for

loading variations, F/k = 0 and the = 0 line applies. Point b in

‘Figure 3 indicates that the suspension clearance would have to be only

5.25 inches if the same vibration level were maintained. Point c shows

that the minimum possible clearance space is about 4.1 inches for the
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optimum synthesized suspension. Thus,for this case an automatic height
control suspension provides a suspension with ﬁearly optimum performance.
If a 1.31 ft. suspension clearance is ecceptable, then
Figure 3 shows that active systems may be incorporated to reduce °
vibration and provide a more comfortable ride. Points d and e indicate
that an automatic height controller and optimum synthesized suspension
may reduce sprung mass vibration by factors of 3 and 7—1/2, respectively.
In this case, it appears that an optimum synthesized suspeneion offers
a significant advantage over an eutomatic height controller which,
in turn, is considerably more effective thap a simpie spfing—shock
absorber suspension. |
Although the above discussion is valuable in comparing the
vibratioﬁ—clearance aspects of several suspensions, we must investigate
further to determine whether the sespensions cited provide adequate
wheel-road contact. From Equation (12), the static unsprung mass
deflection 60 is .09 ft. Since the rms relative wheel—roadway.
excursion 6w should be at least three times smaller than 60, the.

maximum allowable value for Gw is .03 ft. Thus

(Gw/fu7AV)max = 1.4 (83)

The points a - e in Figure 10 ccrrespond to those in Figure 3. Only
three points, a , b , and ¢ , fall below the 1.4 ordinate of

Figure 6. Hence the suspensions corresponding to these points provide
adequate wheel-road contact; whereas thqse suspensions corresponding

to points d and e are unacceptable due to large wheel-roadway excursioms.
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Figure 8 may be used to determine the minimum possible
vibration isolation capabilities of a linear suspension which maintains
nearly continuous wheel-roadway contact.. The numerical value of ‘the

abscissa, using the above high speed vehicle parameters, .iis

£ 3av
u

2 = 0.0058 . . (84)

From Figure 8 the minimum rms suspension force is

rms

m = 0.118 (85)

Since §rms = Frms/M’ the minimum point on the ordinate of Figure 3

becomes

.
—IBS < 0,043 | (86)

lm»/AVfu3

Thus, the largest vibration reduction from points a, b, and ¢ that

might be brought about is only 237%.

B. Frequency Responses and Power Spectral Densities

of thé five optimum systems, a-e, originally considered
only three, a, b, and ¢, met the road holding constraint. The
vehicle acceleration, sprung mass-unsprung mass relative excursion and
the unsprung mass-roadway relative excursion frequency responses and
power spectral densities for these three designs, illustrated in

Figure 17, show at least two significant factors. TFirst, as may be
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seen by comparing frequency responses and power spectral densities
for each variable, the l/w2 form of roadway elevation spectra causes
considerably greater spectral content at the low frequency range than
might be expected by merely inspecting frequency response plots.
Secondly, active systems tend to attenuate or shift to higher
frequencies the low frequency peak of the conventional spring-shock

absorber suspension.
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APPENDIX A

MINIMIZATION PROGRAM

THIS PROGRAM; WRITTEN IN FORTRAN 4, IS USED TO MINIMIZE A FUNCTION OF
I VARIAEBLES B\') USING A HILL CLIMBING TECHNIQUE., THE PROGRAM EVALUATES
A FUNCTION F IN THE MIDOLE OF A BOUNDED SECTION OF PARAMETER SPACE
THEEN IKCREMENTE EACH PARAMETER PLUS AND MINUS 10 PZRCENT OF ITS MAXIMUM
R4NCE, EVALUATING THE FUNCTION AT EACH STEP, WHENEVER A VALUE OF THE
FUNCTICN IS FOUND THAT IS LESS THAN THE STARTING VALUE, FO, THE PROGRAM
CONTINUES FROM TEE NEW POINT, WHEN A POINT IN PARAMETER SPACE IS
REACHED SUCH THAT THE FUNCTION VALUE CORRESPONDING TO THAT POINT IS
LESS THAN THE VALUES OF THE FUNCTION CORRESPONDING TO THE POINTS
DETERMINED BY PLUS AND MINUS INCREMENTS OF EACH PARAMETER THE INCREMENT
OR JUMP SIZE IS REDUCED BY A FACTOR OF TEN AND THE SEARCH PROCESS IS
CONTINUED, THE PROGRAM GIVEN HERE IS FOR THREE PARAMETERS AND EIGHT
ITERATIONS., HOWEVER, IT MAY BE EASILY CHANGED FOR OTHER NUMBERS OF
PARAMETERS AND TTnRAfTOVSO THE BOUNDS ON THE PARAMETER SPACE ARE
GIVEN BY A(J) = BMAX(J), C(J) = BMIN(J). THE SUBROUTINE SHOOT IS FOR
THE FIXED CONFIGURATION PREVIEW CONTROL OPTIMIZATION,

DIMENSION D(3),B(3),C(3),B0(3),DLB(3) ,A(3)
COMON DELRMS,ACCEL,RHO,T
READ(5,2) A(1),A(2),A(3),C(1),C(2),C(3)
FORMAT (7F10,5)
READ(5,5)7, RHO
FORMAT (2535, 8)
WRITE{6,200)

200 TFORMAT(104¥1 T RHO A1  NATL FRQ (W) DA

¥ RATIO (Z) ZLTA RMS ACCEL RMS FO )]

SET UP INITIAL VALUES OF B(I), JUMP SIZE DLB(J), AND PARAMETER
D(J) WHICKE IS USED TO INDICATE WHEN ALL VARIABLES ARE WITHIN ONE
Jur> OF THE OPTIMUM

DO 6 J=1,3

DLB{J) = 001*(A(J)-C(J))

E(J) =0.5%(A(I+C(I))

6 CONTINUE

CALL SHEOOT{F,B)
FO = F _
INITIAL VALUES ARE SET UP, NOW GO THROUGH 8 ITERATIONS TO FIND
OPTIMUM B(I),F

7 DO S5 L= 1,8

8 DO701I=1,3
D(I) = 0,0
50(I) = B(I)

10 B(I) = 50(I) + DLB(I)
KEEP B(I) WITHIN SPECIFIED RANGE
IF(B(I)=-A(I))15,12,12

12  B(I) = A(I)

15  CALL SHOOT(F,B)



20
21
22
25

40

O0o0.

.50

00

OO0

70

100.

80
90
95

IF(F-F0)50,20,20

B(I) = BO(I)-DLB(I) .

KEEP B(I) WITHIN SPECIFIED RANGE

IF(B(I)=-C(1))22,22, 25

B(I) = C(I)

CALL SHOOT(F,B)

IF(F-F0)50,40,40 ,

B(I) = BO(I) -

IF PROGRAM REACHES HERE THEN B(I) IS A LOCAL MINIMUM, IF THIS
HAPPENS FOR ALL B(I) THEN B(I) IS WITHIN ONE JUMP OF THE OPTIMUM
LET D(I)=1, RETAIN OLD VALUE OF FO (SKIP OVER FO=F) -

D(I) = 1,

GO TO 70

CONTINUE

WE HAVE A NEW VALUE OF B(I) AND. F, NOW SEARCH IN-ANOTHER DIRECTION
FROM THIS NEW POINT IN PARAMETER (B) SPACE

FO = F - ,

CONTINUE

SUMD = D(1) + D(2) + D(3)

WRITE PARAMETERS, ETC AFTER ALL PARAMETERS HAVE BEEN EXAMINED ONE

.. JUrP IN EACH DIRECTION

WRITZ(6,100)T,RHO B(l) B(2) B(3) DELRMS ACCEL FO

FORMnT(SFl3 7) )

IF ALL B(I) ARE WITHIN ONE JUMP OF OPTIMUM THEN REDUCE JUMP SIZE
IF(SUMD=2,5)8,80,80 :

DO 90 K=1,3

DLB(K) = Ool*DLB(K)

CONTINUE

GO TO 3

END

SUBROUTINE SHOOT(F,B)

ACCEL = RMS ACCELERATION/SQRT(2*PI*AV)

DELRMS = DELTA RMS/SQRT(2*PI*AV)

B(1)=ASUB1, B{2)=W(NATL FREQ), B(3)=Z(DAMPING RATIO)
DIMENSION B(3) . _ e
" COMMON DELRMS,ACCEL,RHO,T

8§ = SQRT(1l, = B(3)%%*2)

ACCEL=SQRT((B(2)**3*(B(1)**2 + ((L.=B(1))**2) + 2,*B(1)*(1,-B(1))*
1(EXP(~B(3)*B(2)*T))*
2(COS(5*B(2)*T) = (B(3)/S)*SIN(S*B(2)*T))))/(4.*B(3)))

DELRMS =SQRT(((ls = 2,%(B(1) = 2.%(B(3)*%2)) = 2,%(B(1)**2)*(4,*(B
1(3)#%2)= 1,) + 2,%B{1)*(1, = B(1) + 4,*(B(3)**2)*(1, + B(1)))*(EX
2P (~B(3) *B(2) *T)) *COS (S*B(2) *T)+ 2,*B(1)*B(3)*(=1,+4,%(B(3)**2)*(1,
3+ B(1)) = 3.*B(1))*(EXP(~B(3)*B(2) ¥T)) *(SIN(S*B(2)*T)) /S) / (4.*B(3)

_4%B(2))) = 2,*B(1)*B(3)/B(2) + (B(1)**2)*T)

F = RHO*ACCEL + DELRMS
RETURN : L
END

=59-



APPENDIX B

EVALUATION OF INTEGRAL
jm

n

¢/§'x
¢ e

Evaluation of I = -—]-'-—
21§

-jno~

d¢
(¢"+1)2

When the denominator of above equation for I is factored, I

may be written as

e ~
- o P2 X — s (8.1)
oy (¢ BED2(e+ 1=dy2(¢- TH)2(p- 1=1)2

vz Vi Vi vz

The integration indicated by Equation (B.l) is carried out by evaluating
the residues of the four poles that lie in the contour taken around the

left half plane, Thus

' n ¢/2_x 1 ’
Res[(=1+1)/¥2] = -3— . e ‘ (B.2)
(¢ + o2 - vZ ¢+1)2J~
2 o = =1t
Y 2
When Equation (B.2) is evaiuated, we find
n-1 (=1+j)x ‘ ,
Res[(-1+1)//2] = &= (*2) e [x-] (n=x=3) ] (B.3)
Y2
Similarly
Res[(=1-1)/vT] = L. 2L=by® 1 1 D% [ nexe3) ] (B.4)
%6

Since I = Res [(~1+j)/V2] + Res [(-l-j)//f], Equations (B.3) and (B.4)

may be combined to give a general expression for I as



~16. .

e [A cos x + B sin x]

" (B.5)

where the coefficients A and B are given in the following table for values

of n from O through 8. .

n A B
0 32 -/2(3+2x) | -
I ~2(2+x)
2 -/Z(1-2x) e
3- 2x 2%
4 %3 /‘2‘(;—25:)
5 -2x | - =2(2-x)
6 | =/2(3-2x) 32
7 2 (4~x) “2x
- 8 =572 -5v2




APPENDIX ¢

ANALOGY BETWEEN DETERMINISTIC AND RANDOM PROCESSES

X(s) I H(s) ) Y(s)
© Y(s) = H(8)X(s)
Deterministic l Random

Parsevals theorem: | The mean sﬁuared value of y may be

‘ given by
j'w y2(t)dt= -1—§ Y(s)¥(~s)ds | > e
274 i H(=g)?® d
- ® -joo‘ l 27 Zﬂjf H(S) ( 8) xx(s) 8

| h

For the zbove system

© jm : |

Jr 2(t)dc=——j H(s)H(-s)X(s) |
= =3= X(-s)ds l
For X(s) ='a/s | For ® (8 =~ AV/s?

jco
= ' 3 1 ( H(s) H¢s)
L f ,z<t>dt.§ﬁl,_f i) 8)as | 75 wooyf & s

2 Yo X =8
a 3 = | -jw

Therefore

1 [ .2 2
— yé(t)dt = Lo
a ;£A 2TAV
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APPENDIX p
.EVALUATION . OF. INTEGRAL -

. jo .
e Evaluation I - ng L — . ‘ — d¢
of (§+e) ($2+2T4+1) (=¢+e) ($2+22¢+1)

_jm
The above,inéegral may be gyaluéted by suqm;ng:the residues of
the three poles that lie withinvafégggquritaken arqupqitheileft half
plane, Thus I
| I = Res (-¢) + Res (-;+j/T:ET)'+ Res (=g=-3/1-77) (D.1)

The residue at =t is given by

' (=) e
-c) e
Res (=¢g) = T (D,2)
In the expression for Gp rms (Equation (76)) the numerator of one
9
of the terms is of the form 1 - e¢x° For this case
Res(-€) = lx (D.3)
1-e®* 3

The residues at the poles ¢ = -g * j/1-z2 are

n-2 (--:;+j»/1-z;2 x) S
Res (~7+ /1- 7y o Lo CH'/I'CZ ) (D.4)
e (-eH] 8z[1-¢ 2+Jc»’1- 2 ]

—_ —n=2 (=5=3/1-7%2 x) , .
Res(=z=jV1=g2) = (-z=j/1-t®) e (D.5)
8z[1-52=4zV1-2 ]

Thus I may be given in the following general form where the coeffi-

cients A, B, and C are listed below for several values of n:

e~bX

» ) | I = [A cos /i-;i + B sin /1-;E x] + C | (®.6)

4z (1-22)
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A

B

(422-1) (1-z2)
-2 (1-z2)
(1-z2)

-(1-z2)

~gV1=g2(3-412)
V1-g2(1-2%2)
gv/1-g?

gv/1-g2

See Equation (D,.3)
-1/2
0

0
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